
 

 

 

 

 

 
 

 
Supplementary Figure 1. Mean-field predictions of orientation patterns for a confined 
liquid crystal.  For panels a to h a disk-shaped container was considered and for panels i to l 
an annulus-shaped container. Panels a-d, i and k show the scalar order parameter, while 
panels e-h, j and l show the corresponding orientation. All results were obtained for  𝐽=1.25, 
𝐿!=0.5 10-4 and, 𝐿!=10-5.  For the Bi pattern (panels a and e), 𝑊=0.05. For the BB pattern 
(panels b and f) as well as for the two results shown for the annular geometry, 𝑊=0.005. The 
BO patterns (panels c and g) were obtained for 𝑊=0.5 10-3 and the B∞ patterns (panels d and 
h) for 𝑊=0.5 10-4. For i and j, Rinner / Router = 0.1, whereas for k and l, Rinner / Router = 0.3. 
 
 



 

 

 

Supplementary Figure 2. Overview of packing structures of rod-like particles confined in 
2d annulus-shaped chambers. We observed  bipolar structures (top row), 3-fold (second 
row), 4-fold (third row), 5-fold (forth row), 6-fold (sixth row) , 7-fold (seventh row) and, 8-
fold (eighth row)  symmetry. Second column: Schematic showing the classification of the 
patterns. Third column: Particle orientations averaged over 4500 independent configurations, 
labelled by color bar on the right. Fourth column: Scalar order parameter 𝑆 ∈ [0,1]. Fifth 
column: Angular deficit parameter. Simulation parameters: 𝐻 =   1, 𝐿/𝐷   =   15, 𝜂 =   0.40 
and 𝑅!""#$/𝑅!"#$% according to first column. 

 
 
 



 

 

 
Supplementary Figure 3. Image analysis algorithm. Given many measurements of rod 
orientation θ for each pixel, the algorithm for determines the average orientation <θ> of the 
nematic director. a. First frame of original data. b. Orientation output of OrientationJ. Color 
corresponds to orientation θ around each pixel (calibration wheel, below). c. Energy output of 
OrientationJ. Note that energy is highest where changes in fluorescence intensity are largest. 
d. Otsu threshold of the energy image (c). e. Masking the orientation image (b) with the 
threshold image (d). Note that color corresponds to orientation of virus rods in the original 
image (a). f–i. Looping over all frames of a set of images. f,g: original data for frames 200 and 
2000. h,i: Masked orientation images for frames 200 and 2000. j: Maximum time projection 
of the original data for all frames. k: Average orientation of all rods, <θ>, which gives the local 
direction of the nematic director in each image pixel. 

 



 

 

 
Supplementary Figure 4. Determining mean orientation <θ> from distributions of 
individual measurements θ. a. Mean orientation <θ>, as in Supplementary Fig. 11, panel k. 
b. Concentration λ for each pixel corresponding to panel a, where color corresponds to values 
of λ as indicated in the calibration bar on the right. c. Number of orientation measurements n 
per pixel, as determined by the number of frames that a given pixel passes the threshold in 
Step 2. d. Histogram of orientation measurements for the three pixels indicated by triangles, 
diamonds, and pentagons in panels a–c. 
 



 

 

Supplementary Figure 5. Experimentally observed nematic patterns of fd-virus rods 
confined in annular microchambers. The seven patterns were classified as: a. D2, b. D3, c. D∞, 
d. N, e. A1, f. A2 and finally g. A+. Left column. schematic. Black lines depict orientation of 
nematic director. Black points denote positive singularities. White points denote negative 
singularities. Center column. Representative images of the nematic director field. Brightness 
corresponds to maximum intensity projection of acquired time lapse image series. Color 
corresponds to the time-averaged orientation <θ> of the nematic director according to the 
calibration wheel. Scale bars a–f: 5 µm. Scale bars g: 10 µm. Right column. Probability of 



 

 

pattern occurrence as a function of the inner radius (Rinner / Router) and outer radius (Router / 
µm) of the microchambers. 

 

 
Supplementary Figure 6. Distribution of angles, β, between the two +1/2 defects observed 
in asymmetric A2 patterns. a. Schematic representing the angle β formed by the two point 
defects and the center of the circle. b. Histogram of observed values of β. 

 

 
 

Supplementary Figure 7. Comparison of length scales probed in simulations and 
experiments. a. Schematic of an annular chamber with outer radius Router, inner radius Rinner, 
and vertical height H. b. Schematic of rods with thickness D and length L. c. Table comparing 
values of Router, Rinner, H, D, and L between simulation and experiment, as well as the 
relationship between the splay and bend moduli K1 and K3. 
 
 

 



 

 

 
  

Supplementary Figure 8. Computation of the local tensor order parameter. a Top view of 
the confining container divided into cuboid subvolumes. b Top view of a subvolume. c Top 
view of the confining container divided into circular sectors. d Minimum angle between 
average orientation angle of the particles and the radial direction versus the polar angle of the 
confining container. e Location of the three defects, expressed in terms of the polar angle of 
the container, over the course of the simulation after equilibration. f Rotation angle for each 
configuration.  
 



 

 

 
 
Supplementary Figure 9. Average volume fraction per bin. Images correspond to the data 
shown in the first and second column of Figure 2 from the main text. For both panels the 
average packing fraction is 𝜂  = 0.20. 

 
 

 

Supplementary Figure 10. Standard deviation of the scalar order parameter. Panels a-d  
correspond to the data showed in Figure 1 from the main text, panels m to p respectively. 
Panels e-g  show the standard deviation for the results presented in Figure 2, panels g to i, 
respectively.  

 



 

 

 
 

Supplementary Figure 11. Frequency of experimentally observed pattern occurrence. Data 
presented covers all chamber geometries investigated. Black circles denote number of 
occurrences of a given pattern. Gray circles denote total number of chambers analyzed. Circle 
area depicts frequency (legend, top-right). 

 
 



 

 

 
Supplementary Figure 12. Probability of experimentally observed pattern occurrence. 
Data presented covers all chamber geometries investigated. Color denotes probability 
(legend, top-right), defined by the number of occurrences observed divided by the total 
number of chambers analyzed. 

 
 
 
 
 
 
 
 
 

  



 

 

Supplementary Table 1. Overview of the defects observed for confinement in a circular 
geometry 

 
 

Circular geometry 
Pattern In-plane defects Vertical defects 
B! Two point defects (each with topological charge +1/2 ). Two line defects. 
B! Two point defects (each with topological charge +1/2 ). Two line defects. 
B! No defects inside the chamber. No defects. 
B∞ No defects inside the chamber. No defects. 

 
 

Supplementary  Table 2. Overview of the defects observed for confinement in an annular 
geometry 
 
 

Annular geometry 
Pattern In- plane defects Vertical defects 
D! Two point defects (each with topological charge +1/2 ). Two line defects. 
D! Six point defects (three pairs each of them composed of 

a +1/2 and a −1/2 topologically charge point defects) 
and three line defects (connecting the pairs of oppositely 
charged point defects). 

Six line defects and 
three wall defects (each 
wall is bordered by two 
lines). 

D!  (!!!) n line defects.  n wall defects. 
D∞ No defects. No defects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Supplementary Note 1 
Mean-field calculation 
 

In order to assess the effect of the finite size of the particles on the pattern observed in 
the simulations and the experiments we perform mean-field calculations, using a microscopic 
mean-field theory1 . Our model is designed in such a way as to allow the variation of the full 
tensor order parameter, accommodating changes in both the scalar order parameter and in 
the orientation direction. Assuming the system is homogeneous along the z-direction, we 
formulate our model in two dimensions. The effective free energy functional has the form: 
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where   𝑆!  is the dimensional unit circle, 𝜌 ! 𝐫,𝜔   the one-particle areal density 
distribution,  𝜔 is planar unit orientation vector and 𝐫 the position of the particles,  𝐛 𝐫 𝑠  is 
the outwards normal to the confining wall,  𝐧 𝐫 𝑠 is the local director, and 
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is the 2D tensor order parameter. The highest eigenvalue of this tensor corresponds to the 
scalar order parameter (describing the amount of liquid crystalline order in the systems) and 
its corresponding eigenvector gives the orientation. The coupling constant  𝐽 and two elastic 
constants 𝐿! and 𝐿! describe the bulk behavior of the system, whereas 𝑊 controls the wall 
anchoring strength. The latter parameter has to be chosen independently. We minimize the 
above effective free energy functional for given values of  𝐽, 𝐿!, 𝐿!and 𝑊, using a simulated 
annealing Monte Carlo technique 2. 

For the disk geometry, we find that all the patters observed in the simulations are 
reproduced by our field theory (Supplementary Fig. 1). The location of the defects is 
controlled by the relative strength of the wall coupling constant  𝑊 relative to the elastic 
constants 𝐿!and 𝐿!. For high wall coupling constants, the defects are located inside the 
volume (BI pattern), the wall being coated by a nematic film. For smaller 𝑊, the defects 
relocate to the boundary of the container (Bb pattern) and, upon further decrease of the wall 
coupling constant, the defects disappear from inside the container, with only a bend in the 
nematic director being observable (BO pattern). Finally, for very small wall coupling 
constants, the liquid crystalline field is not disturbed by the presence of the wall (B∞ pattern). 
However, in the annular geometry, we are only able to find, as minimum energy 
configurations of the system, the bipolar pattern (D2) and the infinite symmetry pattern D∞ 

(appearing for 𝑅!""#$/  𝑅!"#$% > 0.1). We occasionally see the experimentally observed A1 and 



 

 

A2 patterns but these have higher energy. The higher fold symmetry patterns (D3-D8) do not 
appear, clearly indicating that these patterns are the result of the finite size of the particle.  
 
Supplementary Note 2 
Order parameters  
 
Local order parameter tensor. To globally characterize the order of the system we use the 
standard three dimensional (3D) second rank tensor order parameter 3: 

𝐐! =
1
𝑁

1
2 3𝛚! ⊗𝛚! − 𝕀!

!

, 

where 𝛚!  is a unit vector along the symmetry axis of the rods, 𝑖 = 1,⋯ ,𝑁  a label for the 
particles, and angle brackets denote ensemble averaging.  While this global order parameter 
provides information aspects such as the equilibration of the system, in order to study the 
orientational patterns of the confined liquid crystal, which change over length scales smaller 
than the size of the system, we need a spatially resolved version of the above tensor order 
parameter. We construct this local version by dividing the container in small cuboidal sub-
volumes, which have a square cross-section and the same height as the container. The local 
version of the tensor order parameter reads 4: 
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where k labels the subvolumes, 𝐮!  and 𝑙!! is the length of the cylindrical part of particle 𝑖   
contained in the subvolume k. The length weighting ensures that the contribution to the 
order parameter of each particle is given its proper relative weight. As scalar order parameter 
we will use the largest (positive) eigenvalue of the tensor, a number in the range 0 to 1, which 
we denote by 𝑆!. The corresponding normalized eigenvector 𝐧𝒌 points along the average 
direction of alignment in subvolume 𝑘.  
 
The effect of planarization. The geometry of the systems we consider involves a finite volume 
bounded by two closely spaced, plane parallel surfaces. We take the normal to these surfaces 
to be in the z direction of the laboratory frame. We observe planarization, since the particle 
orientations are only slightly tilted out of the x−y plane, and the particle orientations can thus 
be denoted by 

 𝛚 = 1− 𝜀!!𝛚∥   + 𝜀!𝐳 
 
where 𝛚∥  is a unit vector with only x and y components and 𝜀! ≤ 0.1, corresponding to the 
observed out-of-plane tilts of maximally around ~10°.  Inserting this expression into the 
standard representation of the 3D order parameter tensor yields 
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where for simplicity’s sake we have incorporated the sum over the individual particles and the 
length weighting into the definition of the averaging implied by the angle brackets. Note that 
the first two tensors are entirely planar (i.e. only have non-zero components in the indices x 
and y). Without loss of generality, we can therefore identify them with their projections on 
the x−y plane. To lowest order in 𝜀! we then have 

𝐐!
∥~ !

!
𝛚∥  ⊗𝛚∥   −

!
!
𝕀!   

𝐐!!~−
!
!
𝐳⊗ 𝐳   

We now recall that the standard 2D tensor order parameter is defined as 3: 

𝐐! = 2 𝛚∥  ⊗𝛚∥   − 𝕀!  

 
and so 
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This shows that as long as we can neglect out-of-plane tilting, the 2D and 3D order parameter 
tensors are fully equivalent. More specifically, any eigenvector of 𝐐! is also an eigenvector 𝐐𝟑

∥ , 
albeit that the eigenvalues are shifted, i.e. 

 𝜆!
∥ = !
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  . 

 
This shows that in this case the maximal eigenvalue of  𝐐! also corresponds to the maximal 
eigenvalue of 𝐐!, hence the two order parameters are fully equivalent. This justifies our use of 
𝐐! in the mean-field calculations described below. 

Supplementary Note 3 
Characterization of the topological defects 
 

In the circular geometry we observed four types of bipolar patterns, two of which are 
characterized by defects while two appear to be defect-free (see Supplementary Table 1). All 
patterns are almost perfectly planar, the organization along the vertical axis being essentially a 
stack of planar configurations. The B! pattern is characterized by two defects, each with 
topological charge +1/2, located at a finite distance from the wall; the wall itself is “coated” 
with a nematic film with director tangent to the wall. The pattern B! is the standard one 
observed for the continuum case (see e.g. ref. 5), with two antipodal +1/2 defects located at 
the boundary.  In both patterns, the point defects in the horizontal plane are the endpoints of 
two lines of defects running along the vertical axis. For the B! pattern there are no defects 
present within the simulation volume, but the nematic arrangement is distorted. The field 
lines are seen to converge towards two points located outside the volume, where they form a 
pair of virtual defect points similar to the virtual boojums predicted for nematics confined in 
a spherical geometry (see refs 6,7). The B! pattern is the limiting case of the B! pattern, when 
the two virtual singularities are located infinitely far from the simulation volume, yielding a 
homogeneously aligned phase in the interior. 

The location of the defects can be understood by considering the relative strength of 
two competing alignment tendencies: the particle-particle alignment and the alignment of the 



 

 

particles to the wall.  This interplay is also fully captured by mean-field calculations (see 
above), which reproduce all patterns mentioned.  

In case the coupling of the liquid crystal to the wall is strong, such that the alignment 
follows the local direction of the wall, the global organization of the confined system must 
follow the topological constraints imposed by the confining geometry. In that case the net 
topological charge of the defects in the liquid crystal should be equal to the Euler 
characteristic of the enclosing surface (Poincare's theorem, see e.g.8). A disk has Euler 
characteristic 𝜒 = 1 and thus the total topological charge must be +1.  This can be achieved 
by two +1/2 defects, located either inside the disk as observed for the B!, or in case of the B! 
at the boundary itself. If the density, or equivalently the aspect ratio of the particles, is 
increased, the interparticle alignment dominates over the wall alignment, and the particles no 
longer align perfectly to the wall.  This is the case for the B! pattern, where nevertheless the 
nematic phase appears confined to a virtual elliptical shape, whose Euler characteristic of 
𝜒 = 1 is being compensated by the two virtual +1/2 defect points. Topologically, the B∞ is 
the limiting case in which the length of the major axis of this virtual ellipse approaches 
infinity. 

In the annular geometry we observe four types of patterns: a bipolar one (D!) which is 
similar to the  𝐵! pattern in the circular geometry, a three-fold symmetric one (D!), a number 
of higher symmetry patterns (D!  (!!!)) and a defect free pattern D! (see Supplementary 

Table 2). The D! pattern features three pairs of in-plane point singularities connected by 
radially oriented in-plane defect lines. Each of these defect pairs has a defect with in-plane 
topological charge  −1/2 located closest towards the centre and one with charge +1/2 
closest to the outer wall. Again, these in-plane structures are the endpoints/lines of 
corresponding lines/walls running vertically through the system. An annulus has Euler 
characteristic 𝜒 = 0 and therefore we expect the sum of topological charge of the nematic 
defects that it encloses to vanish in case of strong wall alignment, which clearly is the case for 
the D! pattern. The  D!  (!!!) patterns exhibit n more complex in-plane radial line defects.  A 
deeper analysis of these structures would be required to determine their significance vis-a-vis 
the topological constraints. Finally, the defect-free  𝐷∞ pattern trivially satisfies the topological 
constraints. It is also the lowest free-energy state predicted by continuum theories in the 
strong anchoring limit (see Supplementary Note 1). However, here the pattern only appears 
when the distance between the outer and inner walls precludes the particles to have an 
orientation with a significant component in the radial direction. This again underscores our 
conclusion that the finite symmetry D!   patterns, observed both in the experiments (𝑛 =
3)  and simulations (𝑛 ≥ 3), are indeed due to finite particle-size effects.  

 
Supplementary Note 4 
Image Analysis 

We developed an algorithm to quantify the orientation of the nematic director for each image 
pixel, given a time series (with N frames) of fluorescently labeled tracer rods diffusing in a 
dense, ordered suspension of unlabeled rods. In short, we determine rod orientations θ for 
each frame, and average over frames to get the mean orientation <θ> per pixel. 

Step 1: Given an image of fluorescent rods (Supplementary Fig. 3a), we compute their 
orientations θ (Supplementary Fig. 3b) and the gradient energy, which quantifies the contrast 
between bright and dark pixels (Supplementary Fig. 3c). This step is implemented using 
OrientationJ, which is a freely-available ImageJ plugin originally developed to track collagen 



 

 

and elastin fibers 9,10. This routine computes structure tensors constructed of the spatial 
gradients of fluorescence intensity around each pixel (x,y). Determining the eigenvectors of a 
structure tensor yields the characteristic orientation θ of the fluorescence intensity of a small 
region (x±σ, y±σ) around each pixel (x,y). We set the parameter σ = 3 px, which corresponds 
to the typical length scale of a rod. Furthermore, the trace of the structure tensor yields the 
gradient energy. Note that this quantity should not be confused with a physical energy. 
Rather, it is related to the notion of signal energy 11. 

Step 2: The energy image from Step 1 is thresholded (Supplementary Fig. 3d) using 
Otsu’s method 12. This yields a binary image comprising connected components of bright 
pixels (1) against a dark background (0). Bright pixels in this image correspond to points at or 
near a fluorescently labeled virus particle. 

Step 3: The orientation image from Step 1 is masked using the threshold from Step 2 
(Supplementary Fig. 3e). The result is a set of orientation measurements θ only for pixels at or 
near a fluorescently labeled virus particle. We thus discard orientation measurements of 
background pixels. 

Step 4: Steps 1–3 are repeated for the N frames of the dataset (Supplementary Fig. 3f,g). 
The result is a series of N images produced by Step 3 (Supplementary Fig. 3h,i). 

Step 5: The average orientation <θ> per pixel is determined given the N images from 
Step 4 (Supplementary Fig. 3j,k). Each pixel can have up to N orientation measurements, 
depending on how often it passes the threshold from Step 2. Usually, background pixels never 
pass the threshold from Step 2 and therefore do not have orientation measurements. As 
shown in Supplementary Fig. 4c, the number of orientation measurements per pixel is 
typically n ~ 102, meaning that most areas are well-sampled. 

The von Mises distribution. Computing the arithmetic mean is not a suitable method to 
determine average orientation <θ> since the orientation θ is a circular quantity, which takes 
on values over a finite range (between –90° and 90°) that is periodic (–90° = 90°). Computing 
the arithmetic mean can give incorrect average orientations: we should expect the two 
measurements –89° and 89° to average out to 90°, but the arithmetic mean yields 0°. In order 
to accurately determine average orientation <θ>, we first consider the von Mises distribution 
(a.k.a. circular normal distribution), which is the circular analog of the Gaussian distribution 
13: 

𝑝 𝛼 =    !
! !"#(!! ! )

!!!!(!)
, 

where α is a circular quantity that varies in the range [-π, π) and usually corresponds to an 
angle or phase. The von Mises distribution is parametrized by two parameters: the 
expectation value <α> and the concentration λ. These two parameters are analogous to the 
expectation value µ and the inverse of the standard deviation σ–1 of a Gaussian distribution. 
Note that orientation θ varies in the range [–π⁄2, π⁄2), whereas angle α varies in the range [-π, 
π). Although most circular quantities are measured by an angle α (wind direction, phase of a 
wave), some physical quantities are rather measured by an orientation θ (polarization of light, 
orientation of apolar rods). In order to relate θ to the von Mises distribution, we multiply the 
orientation measurements by a factor of 2 to recover angles α. The average angle <α> is 
computed, and then divided by a factor of 2 to recover the average orientation <θ>. The 
concentration λ remains unchanged when converting between orientation θ and angle α. 

In Step 5, we use the “CircStat” MATLAB toolbox14 to compute <θ> for each pixel 
(Supplementary Fig. 4a), which yields the orientation of the nematic director. We also 
compute the concentration λ of the distribution for each pixel (Supplementary Fig. 4b). In 



 

 

principle, λ can be used as a measure of the order parameter of the liquid crystal: higher 
values of λ indicate a more sharply peaked distribution. 
 
Supplementary Note 5 
Experimentally observed nematic patterns 
 

In the main text, we have shown experimental evidence for confined nematic patterns 
of colloidal fd-virus suspensions that exhibit two-, three-, and infinite-fold symmetries. These 
patterns occur with a probability that depends on chamber size and inner hole radius. In 
addition to these three patterns, we observe four additional types of patterns. In this section, 
we describe all seven patterns in detail, as well as their probability of occurrence as a function 
of chamber shape (Rinner / Router) and chamber size (Router / µm). 

The two-fold symmetric pattern D2 contains two +½ singularities on opposite ends of 
the chamber (Supplementary Fig. 5a). It is most probable in disk-shaped chambers without a 
central hole (Rinner / Router = 0). D2 patterns also form in chambers with a hole (Rinner / Router > 0), 
but with a probability that decreases sharply with increasing hole size. In chambers with a 
central hole, the D2 patterns exhibit two -½ singularities on the inner wall, which are co-linear 
with the outer +½ singularities (Supplementary Fig. 5a, middle column, right image). The 
occurrence of the D2 pattern also depends on the chamber size, decreasing with increasing 
Router and being zero for the largest chambers having an outer radius of 50 µm. The 
experimentally observed D2 patterns correspond to the Bb patterns observed in the 
simulations (cf. main text, Fig. 3b). 

The three-fold symmetric pattern D3 has three evenly spaced +½ singularities at the 
periphery of the chamber, accompanied by three evenly spaced -½ singularities at the inner 
wall (Supplementary Fig. 5b). This pattern only occurs for chambers with a small but finite 
hole size (Rinner / Router = 0.2). Hole diameters for chambers with D3 patterns vary in the range 
2–6 µm, corresponding to ~2.5–7.5 fd-rod lengths. Furthermore, the D3 pattern occurs in 
smaller chambers with Rinner up to 15 µm. The experimentally observed D3 patterns 
correspond to the three-fold symmetric patterns observed in the simulations (cf. main text, 
Fig. 2a). 

The pattern with infinite-fold symmetry D∞ does not exhibit real singularities, and the 
rods remain aligned to the boundaries (Supplementary Fig. 5c). This pattern is most likely to 
occur in narrow ring-shaped chambers with a large hole in the middle, with Rinner / Router = 0.7. 
Furthermore, this pattern occurs exclusively in the smallest chambers with Router up to 25 µm. 

In the smallest chambers (Router = 5 µm) we observe nematic liquid crystals where rods 
align with each other but not along the circular contour of the chamber (Supplementary Fig. 
5d). We denote this pattern, which resembles a bulk nematic state, with the symbol N. These 
patterns occur over a broad range of hole sizes, but only when Rinner = 5 µm. The 
experimentally observed N patterns correspond to the Bo and B∞ patterns observed in the 
simulations (cf. main text, Fig. 3c,d). 

In the experiments, we also observe three further patterns with lower symmetries. Some 
chambers exhibit only one +½ singularity at the outer wall and one -½ singularity at the inner 
wall (Supplementary Fig. 5e). Because of the lack of non-trivial rotational symmetry, we 
denote this asymmetric pattern A1 for “asymmetric, one singularity”. This pattern was mostly 
observed in thin, annular chambers (Rinner / Router = 0.5 and 0.7). The probability of finding A1 
increases somewhat with increasing chamber size, but the pattern is observed over the entire 
range of chamber sizes (5-50 µm). We also observe another asymmetric pattern that exhibits 



 

 

two pairs of +½ and -½ singularities, similar to D2. But the defects are not positioned at polar 
opposites (Supplementary Fig. 5f). We call this pattern A2 (“asymmetric, two singularities”). 
This pattern occurs over a wide range of hole and chamber sizes with no particular 
preference. We quantify the relative positions of the two singularities for A2 patterns by the 
angle β (Supplementary Fig. 6a), and find a broad angle distribution ranging from 90 to 160°, 
with a peak at β = 140° (Supplementary Fig. 6b). (Note that this distribution excludes 
chambers that have been classified as D2 and therefore exhibit β = 180°.) In some cases, 
multiple singularities are scattered across the interior of the chamber, and the nematic 
director field exhibits chaotic-looking patterns (Supplementary Fig. 5g). We denote such 
structures with the symbol A+ (“asymmetric, 3 or more singularities”). We observed this 
pattern mostly in large chambers with small holes (Rinner / Router = 0.1 and Router > 25 µm). 

 
Supplementary Note 6 
Comparison of experiment and simulations 

The D3 pattern was observed over a narrow range of Rinner, both in simulation and 
experiment. However, the ranges of Rinner do not coincide. In the experiments, the D3 pattern 
occurred for Rinner / L = 1.2–3.7. These values are greater than expected from the relation 
between Rinner and L (cf. main text), where we would expect Rinner / L ~ 12−1/2 = 0.29 (cf. main 
text, Fig. 3, vertical gray dashed line corresponding to Rinner = 4.35 D). This relation agrees well 
with simulations performed with the shallowest chambers (H / D = 1), where D3 was found in 
the range Rinner / L = 0.2–0.5 (or Rinner / D = 3–7.5). We suspect that these different ranges of 
Rinner  arise from the fact that experiment and simulation could not be performed with 
identical parameters (Supplementary Fig. 7). In particular, two effects may dominate. First, 
the confinement in the z-direction (height H) was less stringent in experiments (H = 1–3 µm, 
H / L = 1.1–3.4, H / D = 146–452) than in simulations (H / D = 1–6). The simulations 
demonstrated that higher chambers (larger H) exhibit lower-order symmetries (cf. main text, 
Fig. 3). In particular, the range of Rinner where D3 occurs increases by a factor of two as H / D 
increases from 1 to 6, resulting in Rinner / L = 0.27–1. This range does not overlap with the 
experimentally observed range of Rinner / L = 1.2–3.7, but does come close. We expect that 
simulations in thicker chambers would recover better agreement with experiment. Second, 
the rods used in simulation are rigid, likely resulting in K1 < K3, where K1 is the Franck elastic 
constant for splay and K3 for bend strains. Meanwhile fd viruses are semiflexible, with a 
persistence length of 2.2 µm 15. As a result, K1 ~ K3 16. It is possible that the differences in 
Frank elastic constant between experiment and simulation can account for the different 
ranges in Rinner where D3 occurs. 

Experiment and simulation agree on the occurrence of N patterns. In the experiments, 
we found N patterns only for the smallest chambers investigated (Router = 5 µm, Router / L = 
5.7). In the simulations, the N pattern occurred when the rod length L increased such that 
Router / L = 2 or 1.6. (cf. main text, Fig. 1). Although the experimental and simulated values of 
Router / L do not coincide, it is likely that this mismatch can again be accounted for by 
differences in chamber height and/or Frank elastic constants. 

One important question is whether the experimentally observed patterns represent a 
thermodynamic equilibrium state. Although we cannot strictly rule out the possibility of 
nonequilibrium behavior, the nematic patterns we observed were stable over the course of 1–
24 h after sample assembly and were reproducible over a large number of chambers. 
Interestingly, the four experimental patterns that appear as equilibrium states in simulations 
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Supplementary Note 7 
Quantification of defects 
 
To characterize the defects, we use an angular defect parameter δ measuring the variation in 
the direction of alignment around a point. This parameter is defined as:  
 

𝛿 = min∠ 𝐧!,𝐧! +min∠ 𝐧!,𝐧! , 
 
where 𝒏!  are orientations of neighboring sub volumes (see Supplementary Fig. 8b). 
Due to the high symmetry of the confining containers we consider, there is no preimposed 
preferential direction of alignment. For example, in the case of a cylindrical box, all bipolar 
configurations are equivalent, regardless of the angle that the line defined by the two defects 
makes with the x-axis. In the course of a simulation the pattern therefore rotates around the 
symmetry axis of the confining box. We compute the scalar order parameter and the average 
orientation not on the basis of a single configuration, but as an average of independent 
configurations sampled throughout the simulation time. For an ergodic system in thermal 
equilibrium this type of ensemble averaging is equivalent to time averaging. If we average 
over these configurations without accounting for the location of the defects, the patterns will 
be washed out. Averaging, for example, over bipolar configurations with the pair of antipodal 
defects homogeneously distributed around the box results in an overall isotropic-like 
configuration. To prevent this problem we developed a strategy for locating the defects and 
then rotating the configurations in such a way that the defects are located always at the same 
spot. Due to the rotational symmetry of the confining container around its center line, both 
in the disk and the annular geometry, we expect the defect structures, if any, to be located 
radially. Therefore it is convenient to divide the container into circular sectors (see 
Supplementary Fig. 8c). In each of these sectors we compute the average orientation of the 
particles 𝐧. The minimum angle between the average orientation and the radial unit vector to 
the center of the circular sector will run from 0 to π/2, with 0 corresponding to particles 
arranged radially and π/2 to particles aligned to the wall. A sharp drop in this minimum angle 
with respect to the polar angle of the confining container indicates the presence of a defect 
structure.  
As an example, for the 3-fold structure that we see by eye in the configuration shown in 
Supplementary Fig. 8 a and c, we observe, in panel d of the same figure, 3 sharp minima 
corresponding to the angles where the nematic-like domains meet.  Extracting these local 
minima for each configuration, allows us to monitor the location of these defects over the 
course of the simulation (see Supplementary Fig. 8e). The defect structures move 
synchronously, the pattern rotating as a whole, in both directions, around the symmetry axis 
of the container. By taking a single configuration as reference (for example the first one after 
the system is considered equilibrated) we compute the angle 𝜃!  by which we need to rotate 
the other configurations we use in the averaging in order to obtain equivalent configurations, 
with the defects overlapping. This rotation angle is plotted in  Supplementary Fig. 8f as 



 

 

function of the simulation time (expressed in Monte Carlo steps). After rotating the 
configurations we perform the averaging by using the division into cuboid subvolumes. We 
do not compute the tensor order parameter in the circular sector based subvolumes, but 
prefer the cuboid one for the final analysis, because in the circular sectors we have no way of 
differentiating a point defect from a disinclination wall. 
 

Supplementary Note 8 
Error estimation for the simulation results 
 
 The simulation results shown in Fig. 1 and 2 in the main text are obtained by 
averaging the local tensor order parameter over 1000-3000 independent configurations 
sampled throughout the course of a simulation. Only configurations obtained after the system 
had equilibrated, which we monitor using the global scalar order parameter, are used for the 
averaging.  The local scalar order parameter and orientation, shown in the Fig. 1 and 2 in the 
main text, are computed as the highest positive eigenvalue and its corresponding eigenvector 
of the local tensor order parameter (see the subsection Supplementary Note 2 above). In 
order to estimate the standard deviation of these quantities, we compute, using the same 
procedure, the desired values by averaging over smaller subsets of configurations (typically 
100), and using these subsamples as independent measurements. The results for the scalar 
order parameter are shown in Supplementary Fig. 10. Within the nematic-like domains the 
standard deviation is very low and only increases in the vicinity of the defect structures. The 
increase near defects is due to the fact that the relative position of the defects is not 
completely fixed: For the disk geometry, for example, the two defect points are not 
permanently diametrically opposite within the container and in the annular geometry the 
angle between the two line defects is not exactly 360o/n. Another source of error comes from 
the rotation we perform on the configurations in our averaging procedure, since the rotation 
angle is binned. For panel d of Supplementary Fig. 10, which corresponds to the B∞ infinity 
pattern, the higher error at the poles corresponds to particles getting trapped between the wall 
and the nematic-like domain.  
 We note that the errors in the vicinity of the defect points are not caused by sampling 
errors due to small numbers of particles, as the defects do not correspond to empty cuboids 
(see Supplementary Fig. 9). The volume fraction of the cuboids containing the defect 
structure is, however, lower than the average volume fraction due to the fact that in our 
averaging procedure we only account for the central line of each spherocylindrical particle, 
neglecting the spherical caps. In the vicinity of the defects, a higher volume fraction is 
occupied by the spherical caps of the particles than elsewhere. For the annular geometry, in 
the region of point defect, the volume fraction is 10% lower than the average density (see 
Supplementary Fig. 9a). A similar decrease is also observed in the vicinity of the point defects 
in disk geometry. Close to the wall defects the density is ~20% lower, while inside the 
nematic-like domains it increases (see Supplementary Fig. 9b). The only cuboids that are 
almost empty are the ones next to the walls, which very often are partially outside our 
simulation volume. 
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